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Abstract We show that, when the longitudinal confinement factor in an edge-emitting laser
is treated as a dynamic variable, the modulation transfer function has an extra term. This term
produces a supplementary photon–photon resonance peak in the modulation response at a
frequency corresponding to the frequency separation between longitudinal modes, when these
modes are phase-locked long enough (quasi-phase-locked). The photon–photon resonance
peak is strongest when two consecutive quasi-phase-locked dominant longitudinal modes
have similar longitudinal envelopes and share equally the photon population.
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1 Introduction

In conventional high-speed laser devices the modulation response is largely determined by
the carrier-photon resonance (CPR). However, the occurrence of the photon–photon reso-
nance (PPR) can increase the 3-dB modulation bandwidth substantially. The PPR has been
observed in distributed Bragg reflector (DBR) laser diodes (Kjebon et al. 1997; Bach et al.
2004), in coupled-cavity-injection-grating (CCIG) lasers (Kaiser et al. 2004; Gerschütz et al.
2008), and in passive-feedback lasers (Radziunas et al. 2007), but a thorough explanation for
the phenomenon has not been given (Feiste 1998; Morthier et al. 2000).
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2 Modified rate equations

The density rate equations can be written as:

d N

dt
= ηi I

qV
− (

Rsp + Rnr
) − νggNp (1)

d Np

dt
=

(
�vgg − 1

τp

)
Np + �R′

sp (2)

with the same formulation and symbols as in Coldren and Corzine (1995).
The classical small-signal response is obtained by taking the differentials of (1) and (2),

and considering I, N , Np and g as dynamic variables, while � = �xy�z is assumed to be
time-independent (i.e. �z = 1) (Coldren and Corzine 1995). When �(z, t) is also treated as
a dynamic variable, the differentials of (1) and (2) become:

d

[
d N
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]
= ηi

qV
d I − 1

τ�N
d N − vgg d Np − Npvgdg (3)

d
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)
d Np + Np�vgdg + �

τ ′
�N

d N +
(

Npvgg + R′
sp

)
d� (4)

where 1/τ�N = d Rsp/d N + d Rnr/d N and 1/τ ′
�N = d R′

sp/d N . Treating �(z, t) as a
dynamic variable is justified because the optical field distribution in a laser cavity varies both
in space and time, particularly when more than one longitudinal mode are present. The gain
variation dg can be expanded to dg = ad N − apd Np , using the differential gain terms a
and ap . As a result (3) and (4) can be written as:

d

dt

[
d N
d Np

]
=

[−γNN −γNP

γPN −γPP

] [
d N
d Np

]
+

[ ηi
qV d I(

Npvgg + R′
sp

)
d�

]

(5)

where γNN , γNP, γPN and γPP are rate coefficients, as defined in Coldren and Corzine (1995).
To obtain the small-signal responses d N (t) and d Np(t) to a current modulation d I (t), we
assume, as in (Coldren and Corzine 1995), the solutions:

d I (t) = I1e jωt , d N (t) = N1e jωt , d Np(t) = Np1e jωt (6)

Substituting these solutions to (5) leads to:

[
γNN + jω γNP

−γPN γPP + jω

] [
N1

Np1

]
=

[ ηi I1
qV(

Npυgg + R′
sp

)
�xy

δ�z(t)
δt e− jωt dt

]

(7)

The determinant of the left-hand side matrix in (7) is given by:

� =
∣∣∣∣
γNN + jω γNP

−γPN γPP + jω

∣∣∣∣ = (γNN + jω)(γPP + jω) + γNPγPN (8)

and the resulted small-signal photon density is:

Np1 = ηi I1

qV

γPN

�
+

∞∫

0

(γNN + jω)(Npυgg + R′
sp)�xy

�

δ�z(t)

δt
e− jωt dt (9)
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If we neglect the time-dependence of the rate coefficients (i.e. time-averaged parameters
are used in simulations) this can be further simplified to:

Np1 = ηi I1

qV

γPN

�
+

(γNN + jω)
(

Npυgg + R′
sp

)
�xy

�

T∫

0

δ�z(t)

δt
e− jωt dt, T → ∞

(10)

3 The modulation transfer function

When the photon field can be approximated as a sum of two dominant phase-locked lon-
gitudinal modes with frequencies ω1 and ω2, wave numbers k1 and k2, and amplitudes
a1 and a2, the aggregated optical field intensity at position z and time t can be written as:

�2(z, t) =
∣
∣
∣a1(z)e

jk1ze− jω1t + a2(z)e
jk2ze− jω2t

∣
∣
∣
2 =

∣
∣
∣A1(z)e

− jω1t + A2(z)e
− jω2t

∣
∣
∣
2

= |A1(z)|2 + |A2(z)|2 + A1(z)A∗
2(z)e

j�ωt + A∗
1(z)A2(z)e

− j�ωt

= |A1(z)|2 + |A2(z)|2 + c(z)e j�ωt + c∗(z)e− j�ωt (11)

where Δω = ω2 − ω1 > 0 and c(z) = A1(z)A∗
2(z). Using (11) the integral in (10) can be

written as:
T∫
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0

c∗(z)dz

= h(ω) (12)

with A1(z) and A2(z) normalized in such a way that
∫ L

0 |A1(z) + A2(z)|2dz = 1.
Accordingly, the photon density results as:

Np1 = ηi I1

qV

γPN

�
+

(γNN + jω)
(

Npυgg + R′
sp

)
�xy

�
h(ω) (13)

and the modulation transfer function becomes:

H(ω) = ηi

qV

γPN

�
+

(γNN + jω)
(

Npυgg + R′
sp

)
�xy

I1�
h(ω) (14)

The first term in (14) is the traditional modulation transfer function, while the second term
is associated with the PPR. Note that Np is directly proportional to I1 and Npυgg � R′

sp .
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Consequently, contrary to what it might first seem, the second term in (14) is not inversely
proportional to the modulation amplitude of the bias current. The first term in h(ω) has a
maximum value at the modulation frequency ω = �ω, whereas the second term in h(ω) has
a maximum value at the negative modulation frequency ω = −�ω. Including only the first
term from h(ω) leads to a modulation transfer function given by:

H(ω) = ηi

qV

γPN

�
+

(γNN + jω)
(

Npυgg + R′
sp

)
�xy

I1�

× j�ωT e j(�ω−ω)T/2 sin c ((�ω − ω) T/2)

L∫

0

c(z)dz (15)

where T is the interval for which the phase difference between the longitudinal modes is
maintained.

4 Evaluation of the overlap integral

The photon–photon resonance peak gets stronger as the value of the overlap integral∫ L
0 c(z)dz increases. For a simple case with constant longitudinal field amplitudes, a1

and a2, the overlap integral is:

L∫

0

c(z)dz =
L∫

0

a1e jk1za2
∗
e− jk2zdz = a1a2

∗

j�k

(
e j�kL − 1

)
(16)

where �k = k1 − k2 (and k1 �= k2). When two longitudinal modes in a Fabry-Pérot (FP)
laser cavity (without a grating) are considered, �k can be written as:

�k = k1 − k2 = 2π

(
n1

λ1
− n2

λ2

)
= π

L
(m1 − m2) (17)

where n1 and n2 are the effective refractive indices for the modes and m1 and m2 are integers
known as mode orders. Therefore:

L∫

0

c(z)dz =
{

j2a1a2
∗L

π(m1−m2)
, when m1 − m2 = ±1, ±3, ±5, . . .

0, when m1 − m2 = ±2, ±4, ±6, . . .
(18)

When a1 and a2 are real numbers (which is the case when a simple cavity without a grating
is considered) andA1(z) and A2(z) have been normalized as mentioned before, the following
condition results:

a2
1 + a2

2 = 1/L (19)

Furthermore, a1 and a2(a1 ≥ a2) can be related to the side-mode suppression ratio (SMSR)
between the two dominant longitudinal modes by:

SMSR (dB) = 20 log10

(
a1

a2

)
(20)
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Combining Eqs. (18), (19) and (20) leads to the following approximation:

L∫

0

c(z)dz =
{

j
π(m1−m2)

2·10SMSR/20

1+10SMSR/10 , when m1 − m2 = ±1, ±3, ±5, . . .

0, when m1 − m2 = ±2, ±4, ±6, . . .
(21)

where the SMSR is given in dB. This means that the PPR is only obtained between the longitu-
dinal modes for which |m1 −m2| is odd and that the PPR effect is the strongest for successive
modes. The maximum value of the overlap integral is j/π, which is obtained for the succes-
sive modes when the SMSR between them is 0 dB. Under all the mentioned approximations
the modulation transfer function for a laser with quasi-phase-locked successive longitudinal
modes (m1 − m2 = ±1) becomes:

H(ω) = ηi

qV

γPN

�
+

(γNN + jω)
(

Npυgg + R′
sp

)
�xy

I1�

× j�ωT e j(�ω−ω)T/2 sin c ((�ω − ω) T/2)
j

π

2 · 10SMSR/20

1 + 10SMSR/10 (22)

Equation (22) can be easily generalized to include several longitudinal modes.

5 Simulation results

The supplementary term in the modulation response introduces a PPR peak placed at a fre-
quency Δλ · c/λ2, in agreement with the experimental results (Bach et al. 2004; Kaiser et al.
2004; Gerschütz et al. 2008; Radziunas et al. 2007). The PPR peak results from the fact that,
when modulating at the PPR frequency, the variation of the aggregate longitudinal optical
field intensity integral in the cavity is in resonance with the modulating current.

In FP lasers the separation between the CPR and PPR peaks is always high, since high-
frequency CPR requires a short cavity while a close-enough PPR requires a long cavity.
The simulated response, under the given assumptions, for a 1,000μm long laser emitting
at 1.3μm and biased at 100 mA (with typical material parameters) is shown in Fig. 1. The
approximation given by (21) has been used for the overlap integral and the response has been
calculated for SMSR values between 10 and 60 dB. The results have been generated by simu-
lating the modulation response at 5,000 frequencies per GHz, and then plotting the responses
averaged over 1,000 successive equally-spaced frequencies. This was done to eliminate an
artifact ripple in the simulated response, which resulted from the frequency sampling and
limited integration time interval T .

The averaged response is in practice independent of T when T is longer than 10 ns or so,
whereas for small T (∼0.1 ns) the PPR peak cannot be observed. This suggests that the main
reason why PPR is not reported for FP lasers is that these lasers do not provide any mechanism
to maintain the phase difference between the longitudinal modes. A mechanism for phase-
coupling is associated with the presence of gratings so that distributed feedback (DFB) and
DBR lasers can exhibit PPR. Supplementary, in DFB and DBR lasers the longitudinal mode
spacing �λ can be influenced, which opens the possibility to obtain the PPR at 30–40 GHz
even with relatively short L . Several PPR peaks (apart from the �modd · �λ · c/λ2 series)
might be induced in feedback lasers, particularly when multiple longitudinal cavities and/or
detuned loading are employed, since several longitudinal mode spacings might be present in
these lasers. However, the exploitation of these multiple resonances is hampered by various
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Fig. 1 Calculated |H(ω)|2 at 100 mA for a 1,000μm long laser without including the PPR term and with the
PPR term when the SMSR between the two successive dominant quasi-phase-locked longitudinal modes is
10, 20, 30, 40, 50 or 60 dB

Fig. 2 Calculated |H(ω)|2 for a laser with detuned loading when the SMSR between the two dominant
quasi-phase-locked longitudinal modes is 10 dB and the bias current is 120 mA

damping mechanisms when they occur at very high frequencies. Figure 2 presents the mod-
ulation response for a structure with 10 dB SMSR and 30 GHz mode spacing between the
dominant modes. A high 3-dB modulation bandwidth is obtained when the device is biased
above 120 mA.

6 Conclusions

We have shown that when the space and time dependence of the longitudinal confinement
factor is included in the small-signal response analysis, the modulation transfer function has
an extra term. When the laser has two dominant longitudinal modes that are phase-locked
for long enough, this term introduces a PPR peak in the modulation response at a frequency
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corresponding to the frequency separation between these modes. The PPR effect is stronger
when the longitudinal modes are consecutive and phase-locked for longer, when their over-
lap integral is high (i.e. similar longitudinal field distribution envelopes) and their reciprocal
SMSR is small. However, in order to increase the 3-dB modulation bandwidth by exploiting
the PPR effect, a careful structure and operating regime analysis has to be carried out even
when the PPR is available. Parasitic damping mechanisms and a flat modulation response
between the CPR and PPR are critical issues in exploiting the PPR for enhanced modulation
bandwidth.
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